Random number generation from untrusted quantum devices
 Carl A. Miller
 University of Michigan, Ann Arbor

Joint Center for Quantum Information and Computer Science
January 27, 2016

The need for provable randomness

Heninger et al. (2012) broke the keys of a large number of SSH hosts.
"... a wake-up call that secure random number generation continues to be an unsolved problem ..."

A communication scenario: RSA

Two classes of solutions

Pseudorandom generators

Randomness from physical sources

Computational hardness

Assumed randomness (or independence) of the source(s).

The central question

Can we create a source of provable random numbers (with minimal assumptions)?

Outline of the Talk

Part I: Introduction.

Part II: Quantum self-testing.

Part III: Random number generation from untrusted devices.

Part IV: Extensions \& new directions.

Part I: Introduction

My personal narrative

2001-2007: Math Ph. D. student at Berkeley.

Topic: Algebraic Geometry.

My personal narrative

2007-2010: Math Postdoc at Michigan.

My personal narrative

2010: Hired by Yaoyun Shi to work on quantum information.
Quantum cryptography \& quantum communication

Quantum computing

Secure \& efficient transmission \& storage of information

Faster algorithms based
on manipulations of
quantum systems

My personal narrative

2011: Randomness begins.

Untrusted Devices

What are some minimal assumptions we want before we can generate randomness?

Untrusted Devices

What are some minimal assumptions we want before we can 9 Impossible scenario \#1:

Superdeterminism. No randomness exists in the universe. Hopeless.

Impossible scenario \#2:
Information cannot be shielded/contained.
?
Adversary

Untrusted Devices

What are some minimal assumptions we want before we can generate randomness?

1. Assume the existence of a short uniformly random seed.

Adversary

Untrusted Devices

What are some minimal assumptions we want before we can generate randomness?

1. Assume the existence of a short uniformly random seed.

Untrusted Devices

What are some minimal assumptions we want before we can generate randomness?

1. Assume the existence of a short uniformly random seed.
2. Communication can be restricted from and between the devices.

Adversary

Randomness from Untrusted Devices

Test and use at the same time.

Desired claim: Conditioned on SUCCEED, the outputs are uniformly random.

My personal narrative

2011: Read Chapter 5 of Colbeck's thesis.

Chapter 5

Private Randomness Expansion Under Relaxed Cryptographic
Assumptions

> "The generation of random numbers is too important to be left to chance." - Robert R. Coveyou
5.1 Introduction

As a casino owner, Alice has a vested interest in random number generation. Her slot machines use pseudo-random numbers which she is eager to do away
with. Alice has a sound command of quantum physics, and realises a way to

My personal narrative

2014: Our proof.

Robust protocols for securely expanding randomness and distributing keys using untrusted quantum devices

> Carl A. Miller and Yaoyun Shi

Department of Electrical Engineering and Computer Science University of Michigan, Ann Arbor, MI 48109, USA
carlmi,shiyy@umich.edu
April 13, 2015

Abstract
Randomness is a vital resource for modern day information processing, especially for cryptography. A wide range of applications critically rely on abundant, high quality random numbers
generated securely. Here we show how to expand a random seed at an exponential rate without generated securely. Here we show how to expand a random seed at an exponential rate without
trusting the underlying quantum devices. Our approach is secure against the most general adtrusting the underlying quantum devices. Our approach is secure against the most general ad-
versaries, and has the following new features: cryptographic quality output security, tolerating versaries, and has the following new features: cryptographic quality output security, tolerating
a constant level of implementation imprecision, requiring only a unit size quantum memory

The first error-tolerant proof of untrusted-device random number generation.
Recently accepted by the Journal of the ACM.

Part II: Quantum self-testing

How do we know what is going on inside of untrusted quantum devices?

A starting point

Can we ever verify that a device is producing its outputs from quantum measurements?
Quantum

In some cases, yes.

The Magic Square game

The game is won if:

1. Alice's parity is even.
2. Bob's party is odd.
3. The overlap matches.

Cannot be won perfectly with pre-programmed outputs.

Row number

Column number

The Magic Square game

The game is won if:

1. Alice's parity is even.
2. Bob's party is odd.
3. The overlap matches.

But it can be won with measurements on a quantum state!

Row number

Column number

The Magic Square game

Conclusion: If two devices win magic square repeatedly, they must be making quantum measurements.

The CHSH Game

The CHSH game is won if:

A Simple Protocol (Colbeck 2006)

Two boxes play the CHSH game N times and we calculate the avg. score.

$$
N=5
$$

A Simple Protocol (Colbeck 2006)

Two boxes play the CHSH game N times and we calculate the avg. score.

$$
N=500
$$

A Simple Protocol (Colbeck 2006)

Two boxes play the CHSH game N times and we calculate the avg. score. If it's > 0.751, SUCCEED. Outputs must be partially random!

Self-Testing with CHSH

The quantum device that achieves the optimal CHSH score is unique (state + measurements).

Inputs	Score if $O_{1} \oplus O_{2}=0$	Score if $O_{1} \oplus O_{2}=1$
00	+1	-1
01	+1	-1
10	+1	-1
11	-1	+1

Popescu-Rohrlich 92, McKague et al. 2012.

Self-Testing with CHSH

Why?

The only way to maximize the score on each input pair is to have a maximally entangled state with measurements at an angle of $\pi / 8$ from one another:

Input o

Self-Testing with CHSH

Why?

The only way to maximize the score on each input pair is to have a maximally entangled state with measurements at an angle of $\pi / 8$ from one another:

Input 1

Self-Testing with CHSH

Why?

The only way to maximize the score on each input pair is to have a maximally entangled state with measurements at an angle of $\pi / 8$ from one another:

Input 1

Generalizing self-testing

"Optimal robust self-testing by binary nonlocal XOR games." C. Miller, Y. Shi, TOC Proceedings 2013.

We gave a simple geometric criterion to determine exactly which binary XOR games are self-tests.

A Stricter Protocol

Two boxes play the CHSH game N times and we calculate the avg. score. If it's > $\mathbf{0 . 8 5 3 - \boldsymbol { \varepsilon }}$, SUCCEED. Most rounds must produce near-perfect coin flips.

A Stricter Protocol

Small error tolerance is not desirable.
More importantly, how do we prove that the randomness accumulates?

Pieces of the Puzzle

Part III: Randomness expansion from untrusted devices

The Goal

Small uniform seed + untrusted device -> uniform randomness

101011110110001001101100
1111011001101111011111111 10100001010001001111110 10101010111010101010

A Tool

A randomness extractor is a collection of functions

$$
f_{i}:\{0,1\}^{n} \rightarrow\{0,1\}^{m}
$$

such that for any sufficiently random ${ }^{(*)}$ variable X on $\{0,1\}^{n}, f_{i}(X)$ is nearly uniform for most i.

Many known examples.
Partial randomness + small seed \rightarrow uniform randomness.
(*): Guessing probability $\ll 2^{-m}$

The spot-checking protocol (Col 06, Pir 10, CVY 13)

1. Run the device N times. During "game rounds," play CHSH. Otherwise, just input oo.
2. If the average score during game rounds was < C, abort.
3. Otherwise, apply randomness extractor.

Need to prove: Final output is uniform even to an entangled adversary.

Timeline

Colbeck 2006: Proposal.
Pironio+ 2010: Analysis \& Experiment
Pironio +2011 , Fehr +2011 , Coudron +13 : Security against a classical adversary.

Vazirani+ 2012: Full security, no error-tolerance.
M.-Shi 2014: New method. Full security with error-tolerance.
M.-Shi 2015: Maximal error-tolerance, arbitrary nonlocal game.

Pieces of the Puzzle

The non-adversarial IID case

Let

$$
H(X)=\sum_{x} p(x) \log (1 / p(x))
$$

Suppose π is a function such that any device-pair satisfies

$$
\mathrm{H}(\text { outputs })>=\pi(\mathrm{P}(\text { win CHSH }))
$$

Prop (easy): In the non-adversarial IID case, the protocol produces at least π (C) N extractable bits.
$\pi=$ "simple rate curve" for CHSH

The general case

Problem: H is not a good measure.

Joint
distribution of
$\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \ldots$

This distribution has high H but low extractable bits.

The general case

Better measure: The Renyi entropy.

$$
H_{1+c}(X)=-\frac{1}{c} \log \left[\sum_{x} p(x)^{1+c}\right] .
$$

H_{1+c} proves extractable bits in the non-IID case!
 But it's hard to relate to the winning probability.

Def: the $(1+\varepsilon)$-winning probability of a device is

$$
\mathrm{P}(\text { win }) \quad \mathrm{P}_{1+\varepsilon}(\text { win })
$$

$$
\frac{\operatorname{Tr}\left[\rho_{w i n}^{1+\epsilon}\right]}{\operatorname{Tr}\left[\rho^{1+\epsilon}\right]}
$$

where $\rho=$ adversary's state .

The general case

A strong rate curve is a function π satisfying

$$
H_{1+\epsilon}(\text { outputs } \mid \text { adversary }) \geq \pi\left(P_{1+\epsilon}(\text { win })\right)-\mathcal{O}_{\text {dev.-ind. }}(\epsilon)
$$

The error term must be device-independent.

Our central contributions

Theorem. Let G be a nonlocal game that has a strong rate curve π. Then the spot-checking protocol produces $\pi(\mathrm{C}) \mathrm{N}$ uniform bits in N rounds. ${ }^{(*)}$
Theorem. Two families of strong rate curves (shown below for CHSH).

Goal Achieved

Polylog-sized uniform seed
untrusted (+ noisy) devices

-> uniform randomness

Aside: A look inside the proof

A Geometric Fact

The function $\operatorname{Tr}\left[\left.|X|\right|^{1+\varepsilon}\right]$ is uniformly convex. [Ball+ 94]

A Geometric Fact

Consequence [MS 15]: Suppose $\phi \mid->\phi^{\prime}$ is the result of a binary measurement.

$$
\phi^{\prime}=\frac{\phi+U \phi U^{*}}{2}
$$

The more disturbance caused by a measurement, the more randomness it adds.
Call this the ($1+\varepsilon$)-uncertainty principle.

Proving a strong rate curve

Let $\mathrm{w}=\mathrm{max}$ score CHSH achieved by devices that are deterministic on input 00.

Want: $\mathrm{P}_{1+\varepsilon}$ (win) >> w implies positive $\mathrm{H}_{1+\varepsilon}$.
Create a new device by pre-measuring w/ input 00.

$$
P_{1+\varepsilon}(\text { win })>w \quad \text { vs. } \quad P_{1+\varepsilon}(w i n)<w
$$

If this brings the score down significantly, then a significant amount of state disturbance has occurred. $(1+\varepsilon)$-uncertainty principle says that randomness was generated!

So if $P_{1+\varepsilon}(\mathrm{win})$ is significantly larger than $\mathrm{W}_{\mathrm{G}, \mathrm{a}}$, we have randomness.

Part IV: Extensions \& New Directions

Unbounded expansion

Constant-size seed \rightarrow unbounded output

Unbounded expansion from any min-entropy source

Concatenate with a randomness amplification protocol.

Unbounded expansion from a constant number of devices

First proved by Coudron \& Yuen (8 devices, not error tolerant). Our work + Chung-Shi-Wu implies 4 devices.

Key distribution

Our proof $=>$ Generating a secret in two places at once. (Device-independent quantum key distribution.)

Vazirani-Vidick 2013 showed this was possible with a linear seed. We improve to polylogarithmic seed.

111011100...

111011100...

Back to secure communication

$$
\begin{aligned}
& \mathrm{P}, \mathrm{Q}=\underset{\text { randomlychosen }}{\text { primes }} \\
& \mathrm{N}=\mathrm{PQ}
\end{aligned}
$$

Two choices:

1. DI-RE + classical encryption.

Back to secure communication

Two choices:

1. DI-RE + classical encryption.
2. DI-QKD with small seed.

Back to secure communication

Two choices:

1. DI-RE + classical encryption.
2. DI-OKD with small seed.

Looking Forward

The Program: Generate randomness in diverse scenarios, with minimal resources.

... and be very sure.

How sure can we be?

Thanks to the recent loophole-free Bell violation experiments, we can be very sure. (Non-communication guaranteed by relativity!)

Delft

LETTER
Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres

Vienna

Significant-loophole-free test of Bell's theorem with entangled photons

 0

Conjecture: Unbounded expansion from $\underline{2}$ devices

This approach requires:

1. Blind randomness expansion.
2. Parallel randomness expansion.

Blind randomness expansion

Can Alice generate randomness that is unknown the other player?

M., Shi: "Forcing classical strategies for quantum players" (in preparation). A first step.

Parallel randomness expansion

Give inputs to the boxes all at once. Can we still verify randomness?

Experimental RNG

How can we improve theory to assist experimental realization?

NSF PFI:AIR-TT:Prototyping Untrusted Device Quantum Cryptography

NSF STARSS:TTP Option:Small: A Quantum Approach To Hardware Security: from Theory To Optical Implementation

Kim Winick Peter Diehr

Current focus: How does distinguishing between different types of noise (e.g., detector failures) improve the analysis?

The Big Picture

Trustworthy Quantum Information: Quantum cryptography and computation with minimal assumption.

Random number generation from untrusted quantum devices
 Carl A. Miller
 University of Michigan, Ann Arbor

Joint Center for Quantum Information and Computer Science
January 27, 2016

